Numeros primos y compuestos del 1 al 1000

Definición: a meula primo denominaciones un número completo alcanzar exactamente doble divisores integrales, 1 y los número mismo.

ns número 1 no denominada un primo, ya que acabó tiene un divisor.

de esta forma los números primos más pequeños son:

2, 3, 5, 7, ...

ns número cuatro no eliminar primo, ya que combinar tres divisores (1, 2, y 4), y el seis no denominaciones primo, ya que combinan cuatro divisores (1, 2, 3, y 6).

Definición: ns número construir eliminar un número completo con qué es más de dual divisores integrales.

así todos der números enteros (excepto 0 y 1) estaban o primos o compuestos.


Estás mirando: Numeros primos y compuestos del 1 al 1000

Ejemplo:

43 es primo, de sus únicos divisores son uno y 43.

cuarenta y cuatro es compuesto, ya que combinar al 1, 2, 4, 11, 22, y 44 como divisores.


qué puede conocer si a número denominaciones primo?

primero que nada, aquí hay algunas formas para sabe si ns número alguno es primo:

no número mayor que dos que denominaciones un múltiplo de 2 no es un primo, ya que al menos tiene tres divisores: 1, 2, y los número mismo. (Esto eso significa que dos es los único primos par.)

alguna número más alto que 3 que eliminar un múltiplo de 3 no denominaciones un primo, ya que tiene al 1, 3, y al metula mismo como divisores. (Por ejemplo, 303 no eliminar primo, ya que 303 ÷ tres = 101.)

cuales número que denominaciones un múltiplo de cuatro es también un múltiplo de 2, así que podemos eliminaba estos.

no número mayor que cinco que denominada un múltiplo de cinco no denominaciones un primo. (Así los único número primo ese termina con un 0 o cinco es ns 5.)

cuales número que denominada un múltiplo de seis es demasiado un múltiplo de dos y 3, de esta forma que podemos eliminaba estos también.

Puede continuar de ~ ~ forma... Básicamente, solo tiene que mostrado la divisibilidad adelante primos!


Ver más: Día Internacional De La Mujer: Por Que Se Conmemora El 8 De Marzo )

ejemplo 1:

Es 119 primo?


primero pruebe la divisibilidad todos 2. 119 es impar, así alguna es divisible adelante 2.

Enseguida, no pruebe la divisibilidad entre tres . Sume ese dígitos: 1 + uno + nueve = 11. Ya que 11 no es un múltiplo ese 3, uno de cada dos lo denominada 119. (Recuerde, este truco solamente funciona a ~ la prueba ese divisibilidad entre 3 y 9.)

Ya que ciento diecinueve no termina dentro de un 0 o uno 5, alguno es divisible todos 5.

Enseguida, pruebe la divisibilidad adelante 7. Encontrará que 119 ÷ siete = 17.

así la respuesta eliminar NO... Ciento diecinueve no denominada primo.


Ver más: Deduccion Impuesto A Los Debitos Y Creditos Bancarios En Ganancias

por ejemplo 2:

Es 127 primo?


primero pruebe la divisibilidad todos 2. 127 es impar, así alguna es divisible todos 2.

Enseguida, no pruebe la divisibilidad entre 3 . Sume ese dígitos: 1 + dos + 7 = 10. Ya que 10 no eliminar un múltiplo después 3, cualquiera lo denominaciones 127.

Ya que ciento veintisiete no termina en un 0 o a 5, alguno es divisible entre 5.

Enseguida, pruebe la divisibilidad todos 7. Encontrará que siete no ingresar uniformemente.

los siguiente primo denominaciones 11. Pero once no entra uniformemente, también.

Puede parar ahora... Debe ser un primo! alguna necesita continúan comprobando la divisibilidad entre ese siguientes primos (13, 17, 19, 23, etc.). La causa principal es los si el trece entró uniformemente, luego tendríamos ciento veintisiete = 13 × n por algunos número n . Aun entonces n sí que cantidad menor que 13... Y ya sabemos que ciento veintisiete no es divisible entre cualquier número menos que que 13.

de esta manera la respuesta eliminar SI... Ciento veintisiete es primo.

hacía temas hasta luego avanzados y la a lista de los primeros 400 primos, vaya ns la página de los primos o ns la página de factorización prima .